Abstract
Nowadays, the removal of toxic heavy metals from industrial wastewater is a long standing problem due to the industrial progress worldwide. This study mainly focused on the production of a novel nMgO-bentonite nanocomposite using sol–gel method to enhance Cd ions removal from industrial wastewater. The nMgO-bentonite nano-composite was characterized for structural morphology and presence of functional groups using SEM/EDS, XRD and FTIR analysis. Cadmium sorption equilibrium and kinetic data were well fitted to Langmuir and power function models respectively as confirmed by the highest R2 (0.965), and the lowest SE (38*10-6) values among other studied models. The Langmuir removal capacity of the nanocomposite is 200 mg/g which is 60 times greater than that of bentonite. Increased Cd sorption on nano-composite with increased temperature from 287 to 307K and the thermodynamic results revealed that Cd adsorption process was endothermic and spontaneous. The data also showed highly repetitive application of nano-composite during six cycles of adsorption/ desorption experiment. The final results pointed out that nMgO-bentonite nano-composite has great adsorption affinity for Cd and could potentially employ as a cost-effective, ecofriendly and efficient sorbent for Cd removal from contaminated wastewater.
Publisher
Korean Society of Environmental Engineering
Subject
Environmental Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献