Abstract
Heavy-metal ions are common pollutants in wastewater and are thus attracting considerable attention. Herein, an eco-friendly biodegradable adsorbent, iminodisuccinic acid (IDS) modified attapulgite (ATP) is prepared by graft-polymerization to reduce Cu(II) in water, referred as IDS-ATP. The equilibrium adsorption capacity of IDS-ATP for Cu(II) is increased by 329.5% and 272% compared with raw ATP and non-degradable chelator ethylenediaminetetraacetic acid-modified ATP (EDTA-ATP), respectively. Moreover, the adsorption capacities for Cu(II) in combined system increased by 186% compared with in single system. The structure and surface properties of IDS-ATP are characterized, demonstrating that the IDS moieties are anchored on the surface of ATP without structural damage. In the aqueous Cu(II) (64 mg /L), the best adsorption pH is 5.0, the best dosage is 800 mg/L, and the adsorption equilibrium time is 4 h. The adsorption of IDS-ATP is chemical adsorption and regenerated adsorbent still exhibits high adsorption capacity. The adsorption mechanism includes the coordination of amino groups with Cu(II), the chelation of -COOH on heavy metals (HMs), and the ion exchange. Taking Cu(II) as an example to study the process of IDS-ATP in water, it is beneficial to apply this degradable material to reduce the other HMs.
Funder
Fundamental Research Funds for the Central Universities
World‐Class Universities
Characteristic Development Guidance Funds for the Central Universities
National Natural Science Foundation of China
Jiangsu Science and Technology Department
Research on compound improvement and ecological utilization technology of power transmission and transformation project backfill soil
Publisher
Korean Society of Environmental Engineering
Subject
Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献