Activated Carbon: A Review of Residual Precursors, Synthesis Processes, Characterization Techniques, and Applications in the Improvement of Biogas

Author:

Sosa José Aurelio,Laines José RamónORCID,García David Salvador,Hernández Rafael,Zappi Mark,Espinosa de los Monteros Alejandra E.

Abstract

The energy growing demand and the international environmental policies contribute to the use of renewable energy sources. Among these sources, biogas has acquired great relevance due to its energetic similarity to fuels such as liquefied petroleum gas (LPG) and natural gas (NG). However, biogas needs to be upgraded by removing CO2 and trace gases to obtain biomethane (>85% CH4). This review identifies and classifies seven techniques used in biogas upgrading, reported in academic and scientific publications. A 13-year review period (2008-2021) was considered. Lineal regression was used to analyze the publications number per year. Membranes use represents the largest proportion of publications (33%), while activated carbon (AC) reaches only 22%. However, the use and application of AC obtained the best trend as a publication topic, with a maximum value of R2 = 0.7882. This review documents publish works on obtaining and applying AC in biogas enrichment processes. It includes a review of the characteristics and generation rates of various residual lignocellulosic materials used in the synthesis of AC, the synthesis processes, the characterization techniques, and the final adsorption capacities.

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3