Polyaniline-derived nitrogen-doped carbon/MoS2 nanocomposites as cathode for efficient hybrid capacitive deionization

Author:

Liu Zhuannian,Wei Benlong,Wang LipingORCID

Abstract

Molybdenum disulfide (MoS2) has become an attractive faradic material for capacitive deionization (CDI) process, but it still suffers from several drawbacks, such as low electrical conductivity, inferior hydrophilicity and easy restacking. Hence, we integrated MoS2 with high nitrogen content carbonized polyaniline (MoS2/CP) as intercalation cathode for CDI. The disordered entanglement between MoS2 and CP nanosheets enlarged interlayer spacing, improved pore structure and surface area which can provide multiple charge transfer routes and endow more embedding sites to storage Na+. The Mo-N-C bonds improve the electrical conductivity and wettability to facilitate ions diffusion process as well as ensure the cyclic stability of composites electrode. Moreover, the charge transfer between Na+ and N-containing functional groups is beneficial to forming pseudo-capacitance. Accordingly, the MoS2/CP electrode possess a large specific capacitance of 99.1 F g-1 at 5 mV s-1, which is 36% higher than MoS2. The hybrid cell AC//MC-2 delivers a remarkable desalination capacity (29.14 mg g-1), a rapid desalination rate (2.9 mg g-1 min-1) and favorable cyclic durability at 1.2 V in 500 mg L-1 NaCl solution. The superior desalination performance of MoS2/CP electrode was evaluated based on a capacitance-controlled contribution of 85.8% and a diffusion-controlled contribution of 14.2%.

Funder

Science and Technology Planning Project of Shaanxi Provincial Water Resources Department

Key R&D plan of Shaanxi province

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3