Development of water quality prediction model for water treatment plant using artificial intelligence algorithms

Author:

Shin Hwisu,Byun Yonghoon,Kang Sangwook,Shim Hitae,Oak Sueyeun,Ryu Youngsuk,Kim Hansoo,Jung NahmchungORCID

Abstract

Accurate prediction of water quality changes in the water treatment process is an important factor for optimal decision-making process such as the design, operation, and diagnosis of water treatment facilities. This study developed an Artificial Intelligence (AI) algorithm model predicting dissolved organic carbon (DOC) removal and disinfection byproducts formation, and comparatively analyzed existing empirical models and prediction results to examine the applicability of AI algorithm techniques to water quality prediction in the water treatment process. We enhanced empirical models for predicting DOC removal and disinfection byproduct formation in Korea water purification plant. Six AI algorithm techniques were applied and tested using real-world data. All AI algorithm models outperformed the original empirical models in predicting DOC removal and byproduct formation. In terms of the DOC prediction model, multi-layer perceptron (MLP) showed the optimal performance (R2 = 0.9795; root mean square error [RMSE] = 0.0365 mg/L). MLP also showed the optimal performance in disinfection byproduct formation prediction (R2 = 0.9781; RMSE = 0.0008 mg/L. As a result, the prediction performance of AI algorithm models improved with larger sample sizes. By securing data samples for approximately 1 year, these models were confirmed to outperform empirical models.

Funder

Ministry of Trade, Industry and Energy

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acidophiles enable pollution forensics in soil environments;Environmental Engineering Research;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3