Abstract
The market for lithium-ion batteries (LiBs) is growing rapidly, the demand for lithium (Li) in the form of lithium carbonate (Li<sub>2</sub>CO<sub>3</sub>), which is the most common lithium mineralization form, is therefore also increasing significantly. Li is conventionally extracted as Li<sub>2</sub>CO<sub>3</sub> using sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) to precipitate Li ions in an aqueous Li solution. However, Na<sub>2</sub>CO<sub>3</sub> can also be replaced by CO<sub>2</sub>, which highlights the potential of using CO<sub>2</sub> as a sustainable and economically viable alternative. This review focuses on technologies that utilize CO<sub>2</sub> for Li<sub>2</sub>CO<sub>2</sub> precipitation. First, the use of CO<sub>2</sub> gas and Na<sub>2</sub>CO<sub>3</sub> as carbonate sources are compared, and the need to consider important operating conditions with CO<sub>2</sub> bubbling are then presented. Attempts made to increase the specific surface area of the reaction surface to enhance the utilization of CO<sub>2</sub> gas and to produce micro-sized Li<sub>2</sub>CO<sub>3</sub> powders are then reported, and the limitations associated with CO<sub>2</sub> gas utilization are discussed. Although CO<sub>2</sub> precipitation has limitations in terms of efficiency, scalability, and the fine-tuning of reaction conditions, this review shows that if CO<sub>2</sub> precipitation technology is further developed, its use could be key to extracting and recycling next-generation Li.
Funder
Ministry of SMEs and Startups
Korea Institute of Energy Technology Evaluation and Planning
Ministry of Trade, Industry and Energy
Korea Institute of Machinery and Materials
Development of key technologies for safety management of hydrogen charging infrastructure
Publisher
Korean Society of Environmental Engineering
Subject
Environmental Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献