Study on isotherm, kinetics, and thermodynamics of adsorption of crystal violet dye by calcium oxide modified fly ash

Author:

Chakraborty Sagnik,Mukherjee Anupam,Das Subhabrata,Raju Maddela Naga,Iram Saima,Das Papita

Abstract

The natural Fly ash modified with calcium oxide has been employed to eliminate the crystal violet dyestuff from the simulated solution. Herein, the effect of different physicochemical factors like primary dye concentration, sorption contact time, the quantity of the adsorbent, temperature, along with initial simulated solution pH, evaluated for illustrating the mechanism of adsorption. Furthermore, the equilibrium study was conducted, and equilibrium models like Langmuir, Freundlich, and Dubinin- Raduskevich (D-R) were fitted to obtain analytical results to endow with more insight into the process. The results acknowledged that the Langmuir model is well apt and suggests that the adsorption mechanism happens in a monolayer on the fly ash surface. Pseudo-first order, Pseudo-second order, and the intraparticle diffusion model evaluated, and the interpretation suggests the sorption method is obeying the Pseudo-second order and intraparticle diffusion model. The ascertained negative values of Gibbs free energy affirmed the unconstrained process for all symbiotic associations, and the obtained data 78.70 kJ mol<sup>–1</sup> enthalpy values manifested that exothermic mechanism was governing the reaction. The above assessment confirms the application of Calcium oxide pre-treated fly ash as a cheap adsorbent to eliminate the crystal violet dyestuff from the simulated solution.

Funder

National Natural Science Foundation of China

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3