Paracetamol degradation and kinetics by advanced oxidation processes (AOPs): Electro-peroxone, ozonation, goethite catalyzed electro-fenton and electro-oxidation

Author:

Öztürk Hazal,Barışçı Sibel,Turkay Ozge

Abstract

The advanced oxidation of paracetamol (PCT), frequently used analgesic, promoted by electro-oxidation (EOX), goethite catalyzed electro-Fenton (GEF) with goethite, ozonation and electro-peroxone (E-peroxone) was investigated. The degradation efficiency of the processes was evaluated considering the decay of PCT versus time. All the processes showed pseudo-first order character for PCT degradation. kobs values, at optimum conditions for an individual process, were defined as 0.0022, 0.0029, 0.0870 and 0.1662 min-1 for EOX, GEF, ozonation and E-peroxone processes, respectively. Where EOX and GEF processes showed poor degradation efficiencies, novel E-peroxone process provided complete removal of PCT. The degradation of the PCT would mostly occur by OH• and molecular O3 due to the higher rate constants achieved at E-peroxone and ozonation. Conversely, with lower kobs values gained at EOX, hydroxyl radicals would not contribute noticeably to the PCT degradation. In GEF process, due to relatively lower OH• production rate, lower kobs values were obtained for the degradation of PCT. The formation of reaction intermediates, aromatics and carboxylic acids, was also determined in this study.

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3