Predicting ecosystem shift in a Salt Lake by using remote sensing indicators and spatial statistics methods (case study: Lake Urmia basin)

Author:

Abbasszadeh Tehrani Nadia,Janalipour Milad

Abstract

The consequences of unsustainable human activities on the environment are often delayed, when it is too late to compensate. New approaches are based on the use of “spatial statistics” of leading indicators to measure the “critical slowing down” in a degraded ecosystem, when it is reaching to a tipping point. This research predicts the tipping points in the ecosystem of Lake Urmia Basin (LUB) based on spatial statistics. By Remote Sensing (RS) indicators, their effectiveness in assessing the state of the ecosystem was evaluated in a 16-years period (2002-2017). Seven spectral indicators (NDVI, NDWIv,NDWIw,NDSI,SRDI, NMDI and MVWR) were extracted from ten MODIS images. Ability of the indicators to identify critical point in time-series was investigated by five spatial statistic methods (Moran’s-I, Getis-Ord-Gi, Geary’s-C, variance, and skewness). The results showed that Moran’s-I is more successful in predicting the ecosystem tipping point(s) in comparison with other methods. In addition, the ability to predict ecosystem trends by the autocorrelation of MVWR is higher than other indicators. According to results, the tipping points of LUB occurred in the years of 2008 to 2010 and 2015. For further studies, it is recommended to use radar indicators for identifying tipping points of the similar vulnerable ecosystems.

Funder

Aerospace Research Institute

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3