Protracted intra- and inter-pluton magmatism during the Acadian orogeny: evidence from new LA-ICP-MS U-Pb zircon ages from northwestern Maine, USA

Author:

Gibson David,Barr Sandra M.,Van Rooyen Deanne,White Chris,Pilote Jean-Luc

Abstract

Devonian granitoid plutons comprise a major part of the bedrock of northwestern Maine representing the magmatic expression of the Acadian orogeny in this part of the northern Appalachian orogen. They are petrographically diverse with minerals characteristic of both I- and S-type granites, in some cases within the same intrusion, and some are compositionally zoned. New LA-ICP-MS ages presented here elucidate the timing and duration of this magmatism. The earliest phase of granitoid magmatism began around 410–405 Ma with the emplacement of the Flagstaff Lake Igneous Complex, and the presence of contemporaneous mafic rocks suggests that mantle-derived magmas were also produced at this time. Late Devonian ages, ca. 365 Ma, for many intrusions, such as the Chain of Ponds and Songo plutons, reveal that magmatism continued for 45 million years during which compositionally diverse I- and S-type magmas were produced. In addition, there is evidence that intrusive activity was prolonged within some plutons, for example the Rome-Norridgewock pluton and the Mooselookmeguntic Igneous Complex, with 10–15 myr between intrusive units. The new ages suggest a break in magmatism between 400 Ma and 390 Ma apparently separating Acadian magmatism into early and late pulses. The production of lower crustal I-type magmas appears to have been concentrated later, ca. 380–365 Ma, although several S-type granitoids were also emplaced during this period. These Late Devonian plutons display abundant zircon inheritance with ages around 385 Ma, which suggests that the crust was experiencing enhanced thermal perturbations during this extended timeframe. The new data for granitoid plutons in northwestern Maine are consistent with tectonic models for other parts of Ganderia which propose initial flat slab subduction followed by slab breakoff and delamination.

Publisher

University of New Brunswick Libraries - UNB

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3