Nanosuspension Formula of Curcuma xanthorriza Rhizome Dry Extract: Impact of Tween 80-PEG 400 Ratio

Author:

Arifin Moch1ORCID,Shafira Elza1,Noviani Yuslia2ORCID,Desmiaty Yesi3ORCID,Okta Fauzia4ORCID

Affiliation:

1. Department of Pharmaceutics, Faculty of Pharmacy, University of Pancasila, South Jakarta 12640, Indonesia

2. Department of Pharmaceutics, Faculty of Pharmacy, University of Pancasila, South Jakarta 12640, Indonesia;

3. Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pancasila, South Jakarta 12640

4. Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Bengkulu 38371, Indonesia

Abstract

Our previous research investigated nanosuspension using the ionic gelation method with a 2:1 ratio of chitosan to sodium tripolyphosphate (TPP) and 0.44% Curcuma xanthorriza rhizome extract. The results indicated an unstable nanosuspension with a particle size of 399.3 nm, a polydispersity index of 0.60, and an entrapment efficiency of 73.37%. This study aims to develop a nanosuspension using Tween 80-PEG 400 to improve the characteristics and dissolution at pH 6.8. Curcuma rhizome was macerated with 96% ethanol and dried using a spray dryer. The nanosuspension formulation was designed using a 22 factorial design with Tween 80 (0.1%-0.4%) and PEG 400 (0.1%-0.4%) as factors, and the formulation was analyzed using Minitab 18. The dissolution of the optimum formulation was tested. The best formulation, comprising 0.1% Tween 80 and 0.4% PEG 400, provided a spherical shape, a particle size of 111.26 nm, a polydispersity index of 0.27, a zeta potential of 30.77 mV, an entrapment efficiency of 84.30%, and a desirability value of 0.9058. The release of curcumin at pH 6.8 after 180 minutes was 37.85% ± 0.1375 with a DE180 of 83.60% ± 0.1457. The 22 factorial design proved effective for enhancing formulation attributes. Based on the result obtained, it can be concluded that the best formulation contains 0.1% Tween 80 and 0.4% PEG 400, with zero-order release kinetics and a diffusion mechanism.

Publisher

Etflin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3