Effect of the Precursor and Synthesis Mode on the Properties of Hematite for the Preparation of Promoted Iron Oxide Catalysts

Author:

Dvoretskaya A. N.1,Anikanova L. G.1,Dvoretskii N. V.1

Affiliation:

1. Yaroslavl state technical university

Abstract

The fine crystal structure of hematite samples used to prepare potassium-promoted iron oxide dehydrogenation catalysts has been studied by X-ray diffraction and scanning electron microscopy. Samples of α-Fe2O3 were obtained under nonequilibrium conditions from several precursors under different thermolysis regimes. The most important characteristic of hematite, which determines the activity and selectivity of the catalyst based on it, is the fine crystal structure (TCS). The TCS of hematite determines the phase composition of the catalyst. The TCS of hematite is formed during the synthesis of hematite and is determined by the nature of the precursor, the temperature of sample synthesis, and the temperature gradient of the rate of removal of gaseous thermolysis products. The highest activity was demonstrated by a catalyst prepared on the basis of hematite with mosaic blocks of 70–90 nm, with a minimum concentration of SF due to half and quaternary dislocations. Such hematite was obtained by thermolysis of iron sulfate at 950 K under fluidized bed conditions and a low temperature gradient. Hematite from iron carbonate is not recommended for the synthesis of a catalyst due to the high concentration of low-temperature SF, which leads to the formation of catalytically inactive potassium β-polyferrite.

Publisher

Kalvis

Subject

Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formation of a ceramic structure of promoted iron oxide catalyst;From Chemistry Towards Technology Step-By-Step;2023-09-23

2. Formation of a ceramic structure of promoted iron oxide catalyst;From Chemistry Towards Technology Step-By-Step;2023-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3