Abstract
<p>O conceito de Vegetação Natural Potencial (VNP) e a sua representação cartográfica assume uma importância primordial para a maioria dos países europeus nas questões relacionadas com o restauro de habitats. Dada a relação existente entre a localização das diversas séries de vegetação de um território e os principais fatores ambientais, este artigo visa o desenvolvimento de modelação preditiva da VNP para o Concelho de Loures. Atendendo, à estratégia geral de análise e possibilidade de integração de um vasto conhecimento empírico (<em>expert knowledge</em>), aplicou-se a estratégia de modelação<em> classification-then-modelling</em>. Para averiguar a relação entre 6 séries de vegetação e um conjunto de oito variáveis ambientais (Altitude, Declive, Exposição, Índice Topográfico de Humidade, <em>S</em><em>ky </em><em>V</em><em>iew </em><em>F</em><em>actor</em>, Solos, Geologia e Distância ao Tejo) recorreu-se a Modelos de Distribuição de Espécies (SDM) aplicados ao nível da comunidade, suportados em Sistemas de Informação Geográfica (SIG) e em diferentes princípios estatísticos (modelos de regressão, <em> machine learning </em>e <em>rule based</em>). Os resultados obtidos permitiram aferir o modo como os gradientes ecológicos (principalmente o tipo de Solo e a Geologia) determinam a ocorrência das séries de vegetação. A cartografia preditiva da VNP resultante do melhor modelo (modelo da Máxima Entropia com 8 variáveis preditivas), foi ainda validada com a cartografia oficial da VNP do Concelho de Loures (precisão global de 88%). Por último, a sua aplicação na reconstituição da vegetação natural, especialmente após ação antrópica, pelo seu carácter preditivo representará um importante mecanismo de apoio para o planeamento e ordenamento do território.</p>
Publisher
Centro de Estudos Geograficos (IGOT) Universidade de Lisboa
Subject
Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献