In silico molecular docking studies of 2, 4 and 2, 6-di-tert-butylphenol against NAGK and SPP1 proteins to recuperate rheumatoid arthritis

Author:

Singh S.,Qidwai T.,Singh S.

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disorder that primarily affects the synovial joints. It is connected to progressive disability, early death and socioeconomic burdens. So, there is an urgent need to develop novel drugs that effectively treat patients at each stage of disease progression. N-acetylglucosamine kinase (NAGK) and secreted phosphoprotein 1(SPP1) are two attractive drug targets for RA. NAGK protein converts endogenous N-acetyl-D-glucosamine (GlcNAc) into GlcNAc 6-phosphate. GlcNAc has suppressive effects on experimental RA in mouse models. SPP1 stimulates the synthesis of a key proinflammatory cytokine implicated in the pathogenesis of RA. In order to design new drug candidates, crystal structure of human NAGK (PDB Id: 2CH5) was retrieved from the protein data bank. Amino acid sequence of SPP1 (Uniprot Id: P10451) was retrieved from uniprot database and modeled by the Phyre2 server. Computed SPP1 model energy was minimized using the YASARA energy minimization server and validated by the Ramachandran plot and the ProSA-web error-detection tool. 2, 4-Di-tert-butylphenol and 2, 6-Di-Tert-butylphenol are known compound isolates from bark extract of Schleichera oleosa having anti-arthritic and anti-inflammatory activities as accessed by PASS online server. These compounds were docked against active site of NAGK and SPP1 proteins using MTiAutoDock server. The binding affinity of these compounds against NAGK and SPP1 proteins ranges from -6.12 to -7.17 kcal/mol. The findings of this study will open the way for the development of herbal remedies for rheumatoid arthritis based on the Schleichera oleosa plant, potentially leading to the development of novel drugs.

Publisher

World Researchers Associations

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3