Multidimensional Point Transform for Public Health Practice

Author:

Kamel Boulos M. N.,AbdelMalik P.

Abstract

SummaryBackground: With increases in spatial information and enabling technologies, location-privacy concerns have been on the rise. A commonly proposed solution in public health involves random perturbation, however consideration for individual dimensions (at-tributes) has been weak.Objectives: The current study proposes a multidimensional point transform (MPT) that integrates the spatial dimension with other dimensions of interest to comprehensively anonymise data.Methods: The MPT relies on the availability of a base population, a subset patient dataset, and shared dimensions of interest. Perturbation distance and anonymity thresholds are defined, as are allowable dimensional perturbations. A preliminary implementation is presented using sex, age and location as the three dimensions of interest, with a maximum perturbation distance of 1 kilometre and an anonymity threshold of 20%. A synthesised New York county population is used for testing with 1000 iterations for each of 25, 50, 100, 200 and 400 patient dataset sizes.Results: The MPT consistently yielded a mean perturbation distance of 46 metres with no sex or age perturbation required. Displacement of the spatial mean decreased with patient dataset size and averaged 5.6 metres overall.Conclusions: The MPT presents a flexible, customisable and adaptive algorithm for perturbing datasets for public health, allowing tweaking and optimisation of the trade-offs for different datasets and purposes. It is not, however, a substitute for secure and ethical conduct, and a public health framework for the appropriate disclosure, use and dissemination of data containing personal identifiable information is required. The MPT presents an important component of such a framework.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3