Modeling Repeated Time-to-event Health Conditions with Discontinuous Risk Intervals

Author:

Guo Z.,Gill T. M.,Allore H. G.

Abstract

Summary Objectives: Researchers have often used rather simple approaches to analyze repeated time-to-event health conditions that either examine time to the first event or treat multiple events as independent. More sophisticated models have been developed, although previous applications have focused largely on such outcomes having continuous risk intervals. Limitations of applying these models include their difficulty in implementation without careful attention to forming the data structures. Methods: We first review time-to-event models for repeated events that are extensions of the Cox model and frailty models. Next, we develop a way to efficiently set up the data structures with discontinuous risk intervals for such models, which are more appropriate for many applications than the continuous alternatives. Finally, we apply these models to a real dataset to investigate the effect of gender on functional disability in a cohort of older persons. For comparison, we demonstrate modeling time to the first event. Results: The GEE Poisson, the Cox counting process, and the frailty models provided similar parameter estimates of gender effect on functional disability, that is, women had increased risk of bathing disability and other disability (disability in walking, dressing, or transferring) as compared to men. These results, especially for other disabilities, were quite different from those provided by an analysis of the first-event outcomes. However, the effect of gender was no longer significant in the counting process model fully adjusted for covariates. Conclusion: Modeling time to only the first event may not be adequate. After properly setting up the data structures, repeated event models that account for the correlation between multiple events within subjects can be easily implemented with common statistical software packages.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3