Limited Sampling Strategies to Estimate the Area under the Concentration-time Curve

Author:

Fukumoto M.,Bax L.,Kohno A.,Morishita Y.,Tsuruta H.

Abstract

SummaryBackground: Over 100 limited sampling strategies (LSSs) have been proposed to reduce the number of blood samples necessary to estimate the area under the concentration-time curve (AUC). The conditions under which these strategies succeed or fail remain to be clarified.Objectives: We investigated the accuracy of existing LSSs both theoretically and numerically by Monte Carlo simulation. We also proposed two new methods for more accurate AUC estimations.Methods: We evaluated the following existing methods theoretically: i) nonlinear curve fitting algorithm (NLF), ii) the trapezium rule with exponential curve approximation (TZE), and iii) multiple linear regression (MLR). Taking busulfan (BU) as a test drug, we generated a set of theoretical concentration-time curves based on the identified distribution of pharmacokinetic parameters of BU and re-evaluated the existing LSSs using these virtual validation profiles. Based on the evaluation results, we improved the TZE so that unrealistic parameter values were not used. We also proposed a new estimation method in which the most likely curve was selected from a set of pre-generated theoretical concentration-time curves.Results: Our evaluation, based on clinical profiles and a virtual validation set, revealed: i) NLF sometimes overestimated the absorption rate constant Ka, ii) TZE overestimated AUC over 280% when Ka is small, and iii) MLR underestimated AUC over 30% when the elimination rate constant Ke is small. These results were consistent with our mathematical evaluations for these methods. In contrast, our two new methods had little bias and good precision.Conclusions: Our investigation revealed that existing LSSs induce different but specific biases in the estimation of AUC. Our two new LSSs, a modified TZE and one using model concentration-time curves, provided accurate and precise estimations of AUC.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3