Fuzzy-based Vascular Structure Enhancement in Time-of-Flight MRA Images for Improved Segmentation

Author:

Schmidt-Richberg A.,Fiehler J.,Illies T.,Möller D.,Handels H.,Säring D.,Forkert N. D.

Abstract

Summary Objectives: Cerebral vascular malformations might lead to strokes due to occurrence of ruptures. The rupture risk is highly related to the individual vascular anatomy. The 3D Time-of-Flight (TOF) MRA technique is a commonly used non-invasive imaging technique for exploration of the vascular anatomy. Several clinical applications require exact cerebrovascular segmentations from this image sequence. For this purpose, intensity-based segmentation approaches are widely used. Since small low-contrast vessels are often not detected, vesselness filter-based segmentation schemes have been proposed, which contrari-wise have problems detecting malformed vessels. In this paper, a fuzzy logic-based method for fusion of intensity and vesselness information is presented, allowing an improved segmentation of malformed and small vessels at preservation of advantages of both approaches. Methods: After preprocessing of a TOF dataset, the corresponding vesselness image is computed. The role of the fuzzy logic is to voxel-wisely fuse the intensity information from the TOF dataset with the corresponding vesselness information based on an analytically designed rule base. The resulting fuzzy parame ter image can then be used for improved cerebrovascular segmentation. Results: Six datasets, manually segmented by medical experts, were used for evaluation. Based on TOF, vesselness and fused fuzzy parameter images, the vessels of each patient were segmented using optimal thresholds computed by maximizing the agreement to manual segmentations using the Tanimoto coefficient. The results showed an overall improvement of 0.054 (fuzzy vs. TOF) and 0.079 (fuzzy vs. vesselness). Furthermore, the evaluation has shown that the method proposed yields better results than statistical Bayes classification. Conclusion: The proposed method can automatically fuse the benefits of intensity and vesselness information and can improve the results of following cerebrovascular segmentations.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3