Automatic Identification of Diagnostic Significant Regions in Confocal Laser Scanning Microscopy of Melanocytic Skin Tumors

Author:

Gerger A.,Wagner C.,Smolle J.,Wiltgen M.

Abstract

Summary Objectives: Confocal laser scanning microscopy (CLSM) is used for quick medical checkups. The aim of this study is to check the discrimination power of texture features for the automatic identification of diagnostic significant regions in CLSM views of skin lesions. Methods: In tissue counter analysis (TCA) the images are dissected in equal square elements, where different classes of features are calculated out. Features defined in the spatial domain are based on histogram (grey level distribution) and co-occurrence matrix (grey level combinations). The features defined in the frequency domain are based on spectral properties of the wavelet Daubechie 4 transform (texture exploration at different scales) and the Fourier transform (global texture properties are localized in the spectrum). Hundred cases of benign common nevi and malignant melanoma were used as the study set. Classification was done with CART (Classification and Regression Trees) analysis which splits the set of square elements into homogenous terminal nodes and generates a set of splitting rules. Results: Features based on the wavelet transform provide the best results with 96.0% of correctly classified elements from benign common nevi and 97.0% from malignant melanoma. The classification results are relocated to the images by use of the splitting rules as diagnostic aid. The discriminated square elements are highlighted in the images, showing tissue with features in good accordance with typical diagnostic CLSM features. Conclusion: Square elements with more than 80% of discrimination power enable the identification of diagnostic highly significant parts in confocal microscopic views of malignant melanoma.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3