Formative Evaluation of Ontology Learning Methods for Entity Discovery by Using Existing Ontologies as Reference Standards

Author:

Mitchell K. J.,Chapman W. W.,Savova G. K.,Sioutos N.,Rubin D. L.,Crowley R. S.,Liu K.

Abstract

SummaryObjective: Developing a two-step method for formative evaluation of statistical Ontology Learning (OL) algorithms that leverages existing biomedical ontologies as reference standards.Methods: In the first step optimum parameters are established. A ‘gap list’ of entities is generated by finding the set of entities present in a later version of the ontology that are not present in an earlier version of the ontology. A named entity recognition system is used to identify entities in a corpus of biomedical documents that are present in the ‘gap list’, generating a reference standard. The output of the algorithm (new entity candidates), produced by statistical methods, is subsequently compared against this reference standard. An OL method that performs perfectly will be able to learn all of the terms in this reference stand ard. Using evaluation metrics and precision-recall curves for different thresholds and parameters, we compute the optimum parameters for each method. In the second step, human judges with exper tise in ontology development evaluate each candidate suggested by the algorithm con figured with the optimum parameters previously established. These judgments are used to compute two performance metrics developed from our previous work: Entity Suggestion Rate (ESR) and Entity Acceptance Rate (EAR).Results: Using this method, we evaluated two statistical OL methods for OL in two medical domains. For the pathology domain, we obtained 49% ESR, 28% EAR with the Lin method and 52% ESR, 39% EAR with the Church method. For the radiology domain, we obtain 87% ESA, 9% EAR using Lin method and 96% ESR, 16% EAR using Church method.Conclusion: This method is sufficiently general and flexible enough to permit comparison of any OL method for a specific corpus and ontology of interest.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3