Early Illness Recognition Using In-home Monitoring Sensors and Multiple Instance Learning

Author:

Mahnot A.,Popescu M.

Abstract

SummaryBackground: Many older adults in the US prefer to live independently for as long as they are able, despite the onset of conditions such as frailty and dementia. Solutions are needed to enable independent living, while enhancing safety and peace of mind for their families. Elderly patients are particularly at-risk for late assessment of cognitive changes.Objectives: We predict early signs of illness in older adults by using the data generated by a continuous, unobtrusive nursing home monitoring system.Methods: We describe the possibility of employing a multiple instance learning (MIL) framework for early illness detection. The MIL framework is suitable for training classifiers when the available data presents temporal or location uncertainties.Results: We provide experiments on three datasets that prove the utility of the MIL framework. We first tuned our algorithms on a set of 200 normal/abnormal behavior patterns produced by a dedicated simulator. We then conducted two retrospective studies on residents from the Tiger Place aging in place facility, aged over 70, which have been monitored with motion and bed sensors for over two years. The presence or absence of the illness was manually assessed based on the nursing visit reports.Conclusions: The use of simulated sensor data proved to be very useful for algorithm development and testing. The results obtained using MIL for six Tiger Place residents, an average area under the receiver operator characteristic curve (AROC) of 0.7, are promising. However, more sophisticated MIL classifiers are needed to improve the performance.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3