Dual-energy CT-based Assessment of the Trabecular Bone in Vertebrae

Author:

Kirschner M.,Becker M.,Erdt M.,Kafchitsas K.,Khan M. F.,Wesarg S.

Abstract

SummaryBackground: Osteoporosis can cause severe fractures of bone structures. One important indicator for pathology is a lowered bone mineral density (BMD) – conventionally assessed by dual-energy X-ray absorptiometry (DXA). Dual-energy CT (DECT) – being an alternative that is increasingly used in the clinics – allows the computation of the spatial BMD distribution.Objectives: Using DECT, the trabecular bone of vertebrae is examined. Several analysis methods for revealing the bone density distribution as well as appropriate visualization methods for detecting regions of lowered BMD are needed for computer-assisted diagnosis (CAD) of osteoporosis. The hypothesis that DECT is better suited than DXA for the computation of local BMD is investigated.Methods: Building on a model of the interaction of X-rays with bone tissue, novel methods for assessing the spatial structure of the trabecular bone are presented. CAD of DECT image data is facilitated by segmenting the regions of interest interactively and with an Active Shape Model, respectively. The barycentric space of fractional volumes is introduced as a novel means for analyzing bone constitution. For 29 cadaver specimens, DECT as well as DXA has been examined. BMD values derived from both modalities are compared to local force measurements. In addition, clinical data from two patients who underwent DECT scanning for a different reason is analyzed retrospectively.Results: A novel automated delineation method for vertebrae has been successfully applied to DECT data sets. It is shown that localized BMD measurements based on DECT show a stronger linear correlation (R2 = 0.8242, linear regression) to local force measurements than density values derived from DXA (R2 = 0.4815).Conclusions: DECT based BMD assessment is a method to extend the usage of increasingly acquired DECT image data. The developed DECT based analysis methods in conjunction with the visualization provide more detailed information for both, the radiologist and the orthopedist, compared to standard DXA based analysis.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3