A Comparison of Discovered Regularities in Blood Glucose Readings across Two Data Collection Approaches Used with a Type 1 Diabetic Youth

Author:

Lee Victor,Thurston Travis,Thurston Chris

Abstract

Summary Background: Type 1 diabetes requires frequent testing and monitoring of blood glucose levels in order to determine appropriate type and dosage of insulin administration. This can lead to thousands of individual measurements over the course of a lifetime of a single individual, of which very few are retained as part of a permanent record. The third author, aged 9, and his family have maintained several years of written records since his diagnosis with Type 1 diabetes at age 20 months, and have also recently begun to obtain automated records from a continuous glucose monitor. Objectives: This paper compares regularities identified within aggregated manually-collected and automatically-collected blood glucose data visualizations by the family involved in monitoring the third author’s diabetes. Methods: 7,437 handwritten entries of the third author’s blood sugar readings were obtained from a personal archive, digitized, and visualized in Tableau data visualization software. 6,420 automatically collected entries from a Dexcom G4 Platinum continuous glucose monitor were obtained and visualized in Dexcom’s Clarity data visualization report tool. The family was interviewed three times about diabetes data management and their impressions of data as presented in data visualizations. Interviews were audiorecorded or recorded with handwritten notes. Results: The aggregated visualization of manually-collected data revealed consistent habitual times of day when blood sugar measurements were obtained. The family was not fully aware that their existing life routines and the third author’s entry into formal schooling had created critical blind spots in their data that were often unmeasured. This was realized upon aggregate visualization of CGM data, but the discovery and use of these visualizations were not realized until a new healthcare provider required the family to find and use them. The lack of use of CGM aggregate visualization was reportedly because the default data displays seemed to provide already abundant information for in-the-moment decision making for diabetes management. Conclusions: Existing family routines and school schedules can shape if and when blood glucose data are obtained for T1D youth. These routines may inadvertently introduce blind spots in data, even when it is collected and recorded systematically. Although CGM data may be superior in its overall density of data collection, families do not necessarily discover nor use the full range of useful data visualization features. To support greater awareness of youth blood sugar levels, families that manually obtain youth glucose data should be advised to avoid inadvertently creating data blind spots due to existing schedules and routines. For families using CGM technology, designers and healthcare providers should consider implementing better cues and prompts that will encourage families to discover and utilize aggregate data visualization capabilities.

Funder

National Science Foundation

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3