Location Tests for Biomarker Studies: A Comparison Using Simulations for the Two-sample Case

Author:

Scheinhardt M. O.,Ziegler A.

Abstract

Summary Background: Gene, protein, or metabolite expression levels are often non-normally distributed, heavy tailed and contain outliers. Standard statistical approaches may fail as location tests in this situation. Objectives: In three Monte-Carlo simulation studies, we aimed at comparing the type I error levels and empirical power of standard location tests and three adaptive tests [O’Gorman, Can J Stat 1997; 25: 269 –279; Keselman et al., Brit J Math Stat Psychol 2007; 60: 267– 293; Szymczak et al., Stat Med 2013; 32: 524 – 537] for a wide range of distributions. Methods: We simulated two-sample scena -rios using the g-and-k-distribution family to systematically vary tail length and skewness with identical and varying variability between groups. Results: All tests kept the type I error level when groups did not vary in their variability. The standard non-parametric U-test per -formed well in all simulated scenarios. It was outperformed by the two non-parametric adaptive methods in case of heavy tails or large skewness. Most tests did not keep the type I error level for skewed data in the case of heterogeneous variances. Conclusions: The standard U-test was a powerful and robust location test for most of the simulated scenarios except for very heavy tailed or heavy skewed data, and it is thus to be recommended except for these cases. The non-parametric adaptive tests were powerful for both normal and non-normal distributions under sample variance homogeneity. But when sample variances differed, they did not keep the type I error level. The parametric adaptive test lacks power for skewed and heavy tailed distributions.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3