Identifying Associations between Somatic Mutations and Clinicopathologic Findings in Lung Cancer Pathology Reports

Author:

Kumar Nishant,Tafe Laura,Higgins John,Peterson Jason,de Abreu Francise,Deharvengt Sophie,Tsongalis Gregory,Amos Christopher,Hassanpour Saeed

Abstract

Summary Objective: We aim to build an informatics methodology capable of identifying statistically significant associations between the clinical findings of non-small cell lung cancer (NSCLC) recorded in patient pathology reports and the various clinically actionable genetic mutations identified from next-generation sequencing (NGS) of patient tumor samples. Methods: We built an information extraction and analysis pipeline to identify the associations between clinical findings in the pathology reports of patients and corresponding genetic mutations. Our pipeline leverages natural language processing (NLP) techniques, large biomedical terminologies, semantic similarity measures, and clustering methods to extract clinical concepts in freetext from patient pathology reports and group them as salient findings. Results: In this study, we developed and applied our methodology to lobectomy surgical pathology reports of 142 NSCLC patients who underwent NGS testing and who had mutations in 4 oncogenes with clinical ramifications for NSCLC treatment (EGFR, KRAS, BRAF, and PIK3CA). Our approach identified 732 distinct positive clinical concepts in these reports and highlighted multiple findings with strong associations (P-value ≤ 0.05) to mutations in specific genes. Our assessment showed that these associations are consistent with the published literature. Conclusions: This study provides an automatic pipeline to find statistically significant associations between clinical findings in unstructured text of patient pathology reports and genetic mutations. This approach is generalizable to other types of pathology and clinical reports in various disorders and can provide the first steps toward understanding the role of genetic mutations in the development and treatment of different types of cancer.

Funder

National Institutes of Health

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3