Evaluation of Large-scale Data to Detect Irregularity in Payment for Medical Services

Author:

Park Junghyun,Yoon Seokjoon,Kim Minki

Abstract

SummaryBackground: Sophisticated anti-fraud systems for the healthcare sector have been built based on several statistical methods. Although existing methods have been developed to detect fraud in the healthcare sector, these algorithms consume considerable time and cost, and lack a theoretical basis to handle large-scale data.Objectives: Based on mathematical theory, this study proposes a new approach to using Benford’s Law in that we closely examined the individual-level data to identify specific fees for in-depth analysis.Methods: We extended the mathematical theory to demonstrate the manner in which large-scale data conform to Benford’s Law. Then, we empirically tested its applicability using actual large-scale healthcare data from Korea’s Health Insurance Review and Assessment (HIRA) National Patient Sample (NPS). For Benford’s Law, we considered the mean absolute deviation (MAD) formula to test the large-scale data.Results: We conducted our study on 32 diseases, comprising 25 representative diseases and 7 DRG-regulated diseases. We performed an empirical test on 25 diseases, showing the applicability of Benford’s Law to large-scale data in the healthcare industry. For the seven DRG-regulated diseases, we examined the individual-level data to identify specific fees to carry out an in-depth analysis. Among the eight categories of medical costs, we considered the strength of certain irregularities based on the details of each DRG-regulated disease.Conclusions: Using the degree of abnormality, we propose priority action to be taken by government health departments and private insurance institutions to bring unnecessary medical expenses under control. However, when we detect deviations from Benford’s Law, relatively high contamination ratios are required at conventional significance levels.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Reference51 articles.

1. A survey on statistical methods for health care fraud detection

2. Brownson RC, Baker EA, Leet TL, Gillespie KN, True WR. Evidence-based public health. Oxford University Press 2010

3. Burghard C. Big data and analytics key to accountable care success. International Data Corporation Health Insights, Sponsored by: IBM, 3-4. 2012

4. Big data analytics in healthcare: promise and potential

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3