Identification of Breast Cancer Prognosis Markers Using Integrative Sparse Boosting

Author:

Huang J.,Xie Y.,Yi N.,Ma S.

Abstract

SummaryObjectives: In breast cancer research, it is important to identify genomic markers associated with prognosis. Multiple microarray gene expression profiling studies have been conducted, searching for prognosis markers. Genomic markers identified from the analysis of single datasets often suffer a lack of reproducibility because of small sample sizes. Integrative analysis of data from multiple independent studies has a larger sample size and may provide a cost-effective solution.Methods: We collect four breast cancer prognosis studies with gene expression measurements. An accelerated failure time (AFT) model with an unknown error distribution is adopted to describe survival. An integrative sparse boosting approach is employed for marker selection. The proposed model and boosting approach can effectively accommodate heterogeneity across multiple studies and identify genes with consistent effects.Results: Simulation study shows that the proposed approach outperforms alternatives including meta-analysis and intensity approaches by identifying the majority or all of the true positives, while having a low false positive rate. In the analysis of breast cancer data, 44 genes are identified as associated with prognosis. Many of the identified genes have been previously suggested as associated with tumorigenesis and cancer prognosis. The identified genes and corresponding predicted risk scores differ from those using alternative approaches. Monte Carlo-based prediction evaluation suggests that the proposed approach has the best prediction performance.Conclusions: Integrative analysis may provide an effective way of identifying breast cancer prognosis markers. Markers identified using the integrative sparse boosting analysis have sound biological implications and satisfactory prediction performance.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3