Pathway Based Microarray Analysis, Utilising Enzyme Compounds and Cascade Events

Author:

Swift S.,Payne A.,Pavlidis S.

Abstract

SummaryBackground: Pathway based microarray analysis is an effort to integrate microarray and pathway data in a holistic analytical approach, looking for coordinated changes in the expression of sets of genes forming pathways. However, it has been observed that the results produced are often cryptic, with cases of closely related genes in a pathway showing quite variable, even opposing expression.Objectives: We propose a methodology to identify the state of activation of individual pathways, based on our hypothesis that gene members of many pathways or modules exhibit differential expression that results from their contribution to any combination of all their constituent pathways. Therefore, the observed expression of such a gene does not necessarily imply the activation state of a given pathway where its product participates, but reflects the net expression resulting from its participation in all its constituent pathways.Methods: Firstly, in an effort to validate the hypothesis, we split the genes into two groups; single and multi-membership. We then determined and compared the proportion of differentially expressed genes in each group, for each experiment. In addition, we estimated the cumulative binomial probability of observing as many or more expressed genes in each group, in each experiment, simply by chance. Second, we propose a hill climbing methodology, aiming to maximise the agreement of gene expression per module.Results: We detected more frequent expression of multi-membership genes and significantly lower probabilities of observing such a high proportion of differentially expressed multi-membership genes, as the one present in the dataset. The algorithm was able to correctly identify the state of activation of the KEGG glycolysis and gluconeogenesis modules, using a number of Saccharomyces cerevisiae datasets. We show that the result is equivalent to the best solution found following exhaustive search.Conclusions: The proposed method takes into account the multi-membership nature of genes and our knowledge of the competitive nature of our exemplar modules, revealing the state of activity of a pathway.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3