Generating Reference Models for Structurally Complex Data

Author:

Lara J. A.,Martinez L.,Pérez A.,Valente J. P.,Alonso F.

Abstract

SummaryObjectives: We present a framework specially designed to deal with structurally complex data, where all individuals have the same structure, as is the case in many medical domains. A structurally complex individual may be composed of any type of single-valued or multivalued attributes, including time series, for example. These attributes are structured according to domain-dependent hierarchies. Our aim is to generate reference models of population groups. These models represent the population archetype and are very useful for supporting such important tasks as diagnosis, detecting fraud, analyzing patient evolution, identifying control groups, etc.Methods: We have developed a conceptual model to represent structurally complex data hierarchically. Additionally, we have devised a method that uses the similarity tree concept to measure how similar two structurally complex individuals are, plus an outlier detection and filtering method. These methods provide the groundwork for the method that we have designed for generating reference models of a set of structurally complex individuals. A key idea of this method is to use event-based analysis for modeling time series.Results: The proposed framework has been applied to the medical field of stabilometry. To validate the outlier detection method we used 142 individuals, and there was a match between the outlier ratings by the experts and by the system for 139 individuals (97.8%). To validate the reference model generation method, we applied k-fold cross validation (k = 5) with 60 athletes (basket-ball players and ice-skaters), and the system correctly classified 55 (91.7%). We then added 30 non-athletes as a control group, and the method output the correct result in a very high percentage of cases (96.6%).Conclusions: We have achieved very satisfactory results for the tests on data from such a complex domain as stabilometry and for the comparison of the reference model generation method with other methods. This supports the validity of this framework.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3