Assignment of Empirical Mode Decomposition Components and Its Application to Biomedical Signals

Author:

Schmidt C.,Piper D.,Putsche P.,Feucht M.,Witte H.,Leistritz L.,Schiecke K.

Abstract

SummaryObjectives: Empirical mode decomposition (EMD) is a frequently used signal processing approach which adaptively decomposes a signal into a set of narrow-band components known as intrinsic mode functions (IMFs). For multi-trial, multivariate (multiple simultaneous recordings), and multi-subject analyses the number and signal properties of the IMFs can deviate from each other between trials, channels and subjects. A further processing of IMFs, e.g. a simple ensemble averaging, should determine which IMFs of one signal correspond to IMFs from another signal. When the signal properties have similar characteristics, the IMFs are assigned to each other. This problem is known as correspondence problem.Methods: From the mathematical point of view, in some cases the correspondence problem can be transformed into an assignment problem which can be solved e.g. by the Kuhn-Munkres algorithm (KMA) by which a minimal cost matching can be found. We use the KMA for solving classic assignment problems, i.e. the pairwise correspondence between two sets of IMFs of equal cardinalities, and for pairwise correspondences between two sets of IMFs with different cardinalities representing an unbalanced assignment problem which is a special case of the k-cardinality assignment problem.Results: A KMA-based approach to solve the correspondence problem was tested by using simulated, heart rate variability (HRV), and EEG data. The KMA-based results of HRV decomposition are compared with those obtained from a hierarchical cluster analysis (state-of-the-art). The major difference between the two approaches is that there is a more consistent assignment pattern using KMA. Integrating KMA into complex analysis concepts enables a comprehensive exploitation of the key advantages of the EMD. This can be demonstrated by non-linear analysis of HRV-related IMFs and by an EMD-based cross-frequency coupling analysis of the EEG data.Conclusions: The successful application to HRV and EEG analysis demonstrates that our solutions can be used for automated EMD-based processing concepts for biomedical signals.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3