Boosting in Nonlinear Regression Models with an Application to DCE-MRI Data

Author:

Feilke M.,Bischl B.,Gertheiss J.,Schmid V. J.

Abstract

SummaryBackground: For the statistical analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data, compartment models are a commonly used tool. By these models, the observed uptake of contrast agent in some tissue over time is linked to physiologic properties like capillary permeability and blood flow. Up to now, models of different complexity have been used, and it is still unclear which model should be used in which situation. In previous studies, it has been found that for DCE-MRI data, the number of compartments differs for different types of tissue, and that in cancerous tissue, it might actually differ over a region of voxels of one DCE-MR image. Objectives: To find the appropriate number of compartments and estimate the parameters of a regression model for each voxel in an DCE-MR image. With that, tumors in an DCE-MR image can be located, and for example therapy success can be assessed. Methods: The observed uptake of contrast agent in a voxel of an image of some tissue is described by a concentration time curve. This curve can be modeled using a nonlinear regression model. We present a boosting approach with nonlinear regression as base procedure, which allows us to estimate the number of compartments and the related parameters for each voxel of an DCE-MR image. In addition, a spatially regularized version of this approach is proposed. Results: With the proposed approach, the number of compartments – and with that the complexity of the model – per voxel is not fixed but data-driven, which allows us to fit models of adequate complexity to the concentration time curves of all voxels. The parameters of the model remain nevertheless interpretable because of the underlying compartment model. Conclusions: The proposed boosting approaches outperform all competing methods considered in this paper regarding the correct localization of tumors in DCE-MR images as well as the spatial homogeneity of the estimated number of compartments across the image, and the definition of the tumor edge.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3