Author:
Lee Sunghoon I.,Nam Hyo Suk,Garst Jordan H.,Huang Alex,Campion Andrew,Arnell Monica,Ghalehsariand Nima,Park Sangsoo,Chang Hyuk-jae,Lu Daniel C.,Sarrafzadeh Majid,Park Eunjeong
Abstract
SummaryBackground: Alcohol ingestion influences sensory-motor function and the overall well-being of individuals. Detecting alcoholinduced impairments in gait in daily life necessitates a continuous and unobtrusive gait monitoring system.Objectives: This paper introduces the development and use of a non-intrusive monitoring system to detect changes in gait induced by alcohol intoxication.Methods: The proposed system employed a pair of sensorized smart shoes that are equipped with pressure sensors on the insole. Gait features were extracted and adjusted based on individual’s gait profile. The adjusted gait features were used to train a machine learning classifier to discriminate alcohol-impaired gait from normal walking. In experiment of pilot study, twenty participants completed walking trials on a 12 meter walkway to measure their sober walking and alcohol-impaired walking using smart shoes.Results: The proposed system can detect alcohol-impaired gait with an accuracy of 86.2% when pressure value analysis and person-dependent model for the classifier are applied, while statistical analysis revealed that no single feature was discriminative for the detection of gait impairment.Conclusions: Alcohol-induced gait disturbances can be detected with smart shoe technology for an automated monitoring in ubiquitous environment. We demonstrated that personal monitoring and machine learning-based prediction could be customized to detect individual variation rather than applying uniform boundary parameters of gait.
Funder
R&D Program of Fire Fighting Safety and 119 Rescue Technology
Subject
Health Information Management,Advanced and Specialised Nursing,Health Informatics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献