A Wearable System to Assist Walking of Parkinson´s Disease Patients

Author:

Plotnik M.,Roggen D.,Giladi N.,Hausdorff J. M.,Tröster G.,Bächlin M.

Abstract

Summary Background: About 50% of the patients with advanced Parkinson’s disease (PD) suffer from freezing of gait (FOG), which is a sudden and transient inability to walk. It often causes falls, interferes with daily activities and significantly impairs quality of life. Because gait deficits in PD patients are often resistant to pharmacologic treatment, effective non-pharmacologic treatments are of special interest. Objectives: The goal of our study is to evaluate the concept of a wearable device that can obtain real-time gait data, processes them and provides asistance based on pre-determined specifications. Methods: We developed a real-time wearable FOG detection system that automatically provides a cueing sound when FOG is detected and which stays until the subject resumes walking. We evaluated our wearable assistive technology in a study with 10 PD patients. Over eight hours of data was recorded and a questionnaire was filled out by each patient. Results: Two hundred and thirty-seven FOG events have been identified by professional physiotherapists in a post-hoc video analysis. The device detected the FOG events online with a sensitivity of 73.1% and a specificity of 81.6% on a 0.5 sec frame-based evaluation. Conclusions: With this study we show that online assistive feedback for PD patients is possible. We present and discuss the patients’ and physiotherapists’ perspectives on wear-abilty and performance of the wearable assistant as well as their gait performance when using the assistant and point out the next research steps. Our results demonstrate the benefit of such a context-aware system and motivate further studies.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialised Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3