Developing mathematical problem-solving skills in primary school by using visual representations on heuristics

Author:

Kaitera SusannaORCID,Harmoinen Sari

Abstract

Developing students’ skills in solving mathematical problems and supporting creative mathematical thinking have been important topics of Finnish National Core Curricula 2004 and 2014. To foster these skills, students should be provided with rich, meaningful problem-solving tasks already in primary school. Teachers have a crucial role in equipping students with a variety of tools for solving diverse mathematical problems. This can be challenging if the instruction is based solely on tasks presented in mathematics textbooks. The aim of this study was to map whether a teaching approach, which focuses on teaching general heuristics for mathematical problem-solving by providing visual tools called Problem-solving Keys, would improve students’ performance in tasks and skills in justifying their reasoning. To map students' problem-solving skills and strategies, data from 25 fifth graders’ pre-tests and post-tests with non-routine mathematical tasks were analysed. The results indicate that the teaching approach, which emphasized finding different approaches to solve mathematical problems had the potential for improving students’ performance in a problem-solving test and skills, but also in explaining their thinking in tasks. The findings of this research suggest that teachers could support the development of problem-solving strategies by fostering classroom discussions and using for example a visual heuristics tool called Problem-solving Keys.

Publisher

LUMA Centre Finland

Subject

Education

Reference62 articles.

1. Baxter, G. P. & Junker, B. (2001). Designing Cognitive-Developmental Assessments: A Case Study in Proportional Reasoning. In National Council for Measurement in Education. Washington.

2. Birks, M. & Mills, J. (2015). Grounded theory: a practical guide (2nd Ed.). Sage.

3. Bruder, R. & Collet, C. (2011). Problemlösen lernen im Mathematikunterricht. Cornelsen Verlag.

4. Charmaz, K. (2014). Constructing grounded theory (2nd Ed). Sage.

5. Christou, C. & Philippou, G. (2002). Mapping and development of intuitive proportional thinking. The Journal of Mathematical Behavior, 20(3), 321-336. https://doi.org/10.1016/S0732-3123(02)00077-9

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3