Ispol'zovanie neirosetei v prepodavanii vysshei matematiki v tekhnicheskom vuze

Author:

Genvareva Iuliia Anatolevna1,Marchenkova Natalia Georgievna2

Affiliation:

1. Orenburgskii institut putei soobshcheniia (filial) FGBOU VO "Samarskii gosudarstvennyi universitet putei soobshcheniia"

2. FGBOU VO "Rossiiskii gosudarstvennyi universitet nefti i gaza im. I.M. Gubkina" filial v g.Orenburge

Abstract

Due to the rapid development of information technology and artificial intelligence, the use of neural networks is becoming more widespread and significant in various fields of research and training. In higher mathematics, neural networks can be used to improve the learning process of students. For example, they can help create online courses tailored to the individual needs of students. Neural networks can analyze the results of students' work and offer individual recommendations for studying specific topics or problem areas. In addition, neural networks can be used to develop intelligent systems for automatic task verification and pattern recognition. This can help teachers in the process of evaluating students' work and providing feedback. Neural networks can also diagnose problems in understanding the material and offer additional materials or exercises to consolidate skills. Neural networks can also be used to study complex mathematical problems and develop new approaches and methods in higher mathematics. Their ability to process large amounts of data and find complex patterns can help in the study of mathematical structure and the creation of new mathematical models. It is obvious that the use of neural networks in teaching higher mathematics opens up opportunities for more effective and individualized student learning, as well as for the development of mathematics itself. Therefore, this topic is relevant and interesting for further research and applications.

Publisher

Publishing house Sreda

Reference11 articles.

1. Doing and proving: the plase of algorithms and proof in school mathematics;Ross K.;American Mathematics Manthly,1998

2. A review and prospect of readable machine proofs for geometry theorems;Jiang J. ; Zhong J.;Journal of Systems Science and Complexity,2012

3. Семантическая паутина и искусственный интеллект;Бессмертный И. А.;Научно-технический вестник информационных технологий, математики и оптики,2009

4. Логические нейронные сети;Барский А. Б.

5. Самореализация подростка в системе взаимодействия семьи и школы;Генварева Ю. А.;Вестник Томского государственного университета,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3