Clasificación de rutas turísticas por medio de deep learning

Author:

Gómez Alvarado Héctor Fernando1ORCID,Mayorga Ases María José1ORCID,Mayorga Ases Leticia Abigail1ORCID,Malo Martínez Silvia ElenaORCID

Affiliation:

1. Universidad Técnica de Ambato

Abstract

Introducción. Actualmente el deep learning o aprendizaje profundo tiene aplicaciones de todo tipo, el turismo no es la excepción, la minería de datos ha permitido optimizar procesos dentro de la industria del turismo como la demanda turística, conocer la preferencia de rutas turísticas de las personas permite optimizar recursos y plantear mejoras dentro de este sector.  Objetivo. Determinar si se pueden clasificar rutas turísticas por medio de herramientas del deep learning o aprendizaje profundo. Metodología. El diseño de investigación fue cualitativo, se empleó técnicas como la entrevista, para ello se plantean dos hipótesis, la primera tiene que ver con la relación entre el tipo de clima del destino turístico y la preferencia de los turistas, la segunda hipótesis es la verificación de la conformación de clusters turísticos en base a la preferencia de las personas. Como herramientas de verificación se empleó la comprobación directa y el programa Weka con la opción de clusters SimpleKMeans que permite la identificación de las preferencias de los turistas en base a la minería de datos de 31 personas. Resultados. Los resultados indican que la mayor cantidad de personas entrevistadas prefieren destinos turísticos en climas calurosos, sin embargo, este no fue un parámetro determinante en la conformación de clusters. Conclusión. En el estudio se determinó que sí se puede formar clusters de clasificación de rutas turísticas en base a las preferencias de las personas.

Publisher

Editorial Ciencia Digital

Reference15 articles.

1. Ahmad, J., Farman, H., & Jan, Z. (2019). Deep Learning Methods and Applications. Deep Learning: Convergence to Big Data Analytics (pp. 31-42). Springer. https://doi.org/10.1007/978-981-13-3459-7_3

2. Enseñat, F. (2020). Clasificación de las zonas arqueológicas según su nivel de atracción. Investigaciones geográficas, 102. https://doi.org/10.14350/rig.60146

3. Hao, X., Zhang, G., & Ma, S. (2016). Deep Learning. International Journal of Semantic Computing, 10(03), 417-439. https://doi.org/10.1142/S1793351X16500045

4. Jeong, C. S., Ryu, K. H., Lee, J. Y., & Jung, K. D. (2020). Deep Learning-based Tourism Recommendation System using Social Network Analysis. International Journal of Internet, Broadcasting and Communication, 12(2), 113-119. https://doi.org/10.7236/IJIBC.2020.12.2.113

5. Labzioui, H. (2020). Aplicación de Deep Learning a la predicción de turismo en la Costa del Sol. https://riuma.uma.es/xmlui/handle/10630/20490

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3