DIGITAL INDUSTRIALIZATION IN THE TRANSITION TO 3D PRINTING TECHNOLOGY

Author:

ÖZKAN ErhanORCID

Abstract

In this article, details for the increasing properties with the help of 3D printer assisted technique of a material produced by classical sand mould casting method through a technological transformation were presented. At the same time, digital transformation studies were included with the development of online data monitoring systems in mass production. After the design studies were carried out with Solidworks, design verification research with computational fluid dynamics (CFD) and finite element analysis (FEA) have been realized. Solidification, filling-time-temperature analyses, and casting simulation studies of micro and macro shrinkage were carried out using the Anycasting simulation program. Then the intensive use of simulation techniques, the activities that would increase the quality of the product with 3D printers were detailed. The microstructure investigation, chemical analyses, and mechanical tests were performed to prove the positive effect of the 3D printing system. Surface morphology determination results showed that the better outcomes have been obtained from the 3D printing reinforced system. Finally, a unique data monitoring system that could communicate with production equipment for the first time in our country without the need for any external software and license, within the scope of digital industrialization system were explained. With the commissioning of the 3D system, 44.2% increase in efficiency and 33% improvement in quality rates were achieved. The biggest advantage of this system is that the total amount of energy consumed was reduced from 197 mJ to 81 mJ.

Funder

TÜBİTAK

Publisher

International Journal of 3D Printing Technologies and Digital Industry

Subject

Marketing,Economics and Econometrics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3