EVALUATION OF U-Net AND ResNet ARCHITECTURES FOR BIOMEDICAL IMAGE SEGMENTATION

Author:

ÇALIŞAN Mücahit1ORCID,GÜNDÜZALP Veysel2ORCID,OLGUN Nevzat3ORCID

Affiliation:

1. BİNGÖL ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

2. INONU UNIVERSITY, FACULTY OF ENGINEERING

3. AFYON KOCATEPE ÜNİVERSİTESİ

Abstract

Medical professionals need methods that provide reliable information in diagnosing and monitoring neurological diseases. Among such methods, studies based on medical image analysis are essential among the active research topics in this field. Tumor segmentation is a popular area, especially with magnetic resonance imaging (MRI). Early diagnosis of tumours plays an essential role in the treatment process. This situation also increases the survival rate of the patients. Manually segmenting a tumour from MR images is a difficult and time-consuming task within the anatomical knowledge of medical professionals. This has necessitated the need for automatic segmentation methods. Convolutional neural networks (CNN), one of the deep learning methods that provide the most advanced results in the field of tumour segmentation, play an important role. This study, tumor segmentation was performed from brain and heart MR images using CNN-based U-Net and ResNet50 deep network architectures. In the segmentation process, their performance was tested using Dice, Sensitivity, PPV and Jaccard metrics. High performance levels were sequentially achieved using the U-Net network architecture on brain images, with success rates of approximately 98.47%, 98.1%, 98.85%, and 96.07%

Publisher

International Journal of 3D Printing Technologies and Digital Industry

Subject

Marketing,Economics and Econometrics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3