Determination of Buildings With Torsional Irregularity by Artificial Intelligence Methods

Author:

USTA Pınar1,KAYA Zeki Muhammet Mücahit1,ÖZKAHRAMAN Merdan2

Affiliation:

1. ISPARTA UNIVERSITY OF APPLIED SCIENCES

2. ISPARTA UYGULAMALI BİLİMLER ÜNİVERSİTESİ

Abstract

Reinforced Concrete (RC) frame buildings with shear wall are widely used in severe seismic zones. Shear walls are bearing system elements that provide the greatest resistance against horizontal force under the effect of earthquake, limit displacements and prevent torsions. A reinforced concrete shear wall is one of the most critical structural members in buildings, in terms of carrying lateral loads. However, irregular layouts cause to torsional irregularity in buildings. For this purpose, different shear wall frame reinforced concrete building models are designed. The model buildings have a regular formwork plan. The shear wall layout has different variations in each plan. These structure plans were mainly classified in two classes according to their torsional irregularities as structures with torsional irregularities and Structures with non-torsional irregularities. Artificial intelligence (AI) has revolu-tionized industries such as healthcare, agriculture, transportation, and education, as well as a variety of structural engineering problems. Artificial intelligence is transforming decision-making more easier and reshaping building design processes to be smarter and automated. Artificial intelligence technolo-gy of learning from an existing knowledge base is used to automate various civil engineering applica-tions such as compressive strength estimation of concrete, project pre-cost and duration, structural health monitoring, crack detection and more. In this study, it is aimed to determine the structures with torsional irregularity using artificial intelligence methods. Besides, the study is expected to introduce and demonstrate the capability of Artificial intelligence-based frameworks for future relevant studies within structural engineering applications and irregularities.

Publisher

International Journal of 3D Printing Technologies and Digital Industry

Subject

Marketing,Economics and Econometrics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3