INVESTIGATION OF MECHANICAL PROPERTIES OF SAND CASTING MOLDS PRODUCED BY BINDER JETTING 3D PRINTER

Author:

ASLAN İbrahim1ORCID,CAN Ahmet2ORCID

Affiliation:

1. AMASYA ÜNİVERSİTESİ, TAŞOVA YÜKSEL AKIN MESLEK YÜKSEKOKULU, MOTORLU ARAÇLAR VE ULAŞTIRMA TEKNOLOJİLERİ BÖLÜMÜ, RAYLI SİSTEMLER MAKİNE TEKNOLOJİSİ PR.

2. NECMETTİN ERBAKAN ÜNİVERSİTESİ, MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ, ENDÜSTRİYEL TASARIM BÖLÜMÜ, ENDÜSTRİYEL TASARIM ANABİLİM DALI

Abstract

The use of the additive manufacturing method in the casting industry is increasing day by day. The production of reverse angled and complex shaped casting parts, which cannot be produced with the classical modeling technique, can also be produced very easily with this method. On the other hand, it is very fast, especially in terms of rapid production of prototype castings, which can be directly molded without the need for model production. In this study, a 3D Printer with binder jet was designed and produced firstly. 3D Printer; It consists of 3 parts, the main chassis, the sand spreader and the spraying part. In this printer, which was produced afterwards, sand molds were produced with different nozzle advance speeds, different catalyst ratios and sand grain sizes. The consumables used in the production of sand molds are silica sand, furan resin and catalyst. The mechanical properties of the produced samples were determined by performing compression and gas permeability tests. Afterwards, it was determined which of the produced samples were more suitable for a sand casting mold by comparing the results obtained from similar studies in the literature. In this study, a new printer was designed with direct spray technique without using cartridges and preliminary studies were carried out successfully.

Funder

Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri(BAP) Koordinatörlüğü

Publisher

International Journal of 3D Printing Technologies and Digital Industry

Subject

Marketing,Economics and Econometrics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3