OPTIMIZATION OF 3D PRINTING PARAMETERS TO MECHANICAL STRENGTH IMPROVEMENT OF SUSTAINABLE PRINTING MATERIAL USING RSM

Author:

ZURNACI Erman1ORCID

Affiliation:

1. KASTAMONU ÜNİVERSİTESİ

Abstract

Fused Deposition Modelling (FDM), one of the most widely used methods of Additive Manufacturing Technique known as 3D Printing, is a popular technique used to produce different engineering components using common engineering polymers. PLA filament, a synthetic polymer derived from corn starch, is generally used in production with the FDM. Although PLA material is recyclable and biodegradable, its carbon emission is not zero. One of the filament types developed to produce more sustainable products is Wood PLA filament materials. This study presents an experimental study examining the effect of printing parameters on the mechanical properties of components produced with Wood PLA filaments. The effects of the printing parameters determined as infill pattern, infill density and nozzle temperature on the mechanical strength parameter determined as tensile strength and bending strength of PLA Wood samples produced in standard sizes were investigated experimentally. The experimental design was carried out in accordance with the Taguchi L9 orthogonal array, and the relationship between the printing parameters and the mechanical strength parameters was modelled mathematically. The estimated strength values calculated using mathematical models were compared with the experimental test results. The results showed that the tensile strength and flexural strength values were directly proportional to the infill density. Experiments have shown that the most effective 3D printing parameter on the mechanical strength parameters is the infill density parameter with a contribution ratio of 63.09% for tensile strength and 73.83% for flexural strength.

Publisher

International Journal of 3D Printing Technologies and Digital Industry

Subject

Marketing,Economics and Econometrics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3