Performance Evaluation of Design AD System Biogas Purification Filter

Author:

Orhorhoro Ejiroghene Kelly,Orhorhoro Oghenero Wilson,Atumah Eruero Victor

Abstract

Biogas purification which is the removal of impurities so as to improve the efficiency of gas produced, ensure the safety of end users and prolong the life of the equipment cannot be neglected. This paper is focused on the design and performance evaluation of AD system biogas purification filter. Three different conceptual designs were generated from possible design consideration, feasibility study and preliminary test and with the help of decision matrix; the best conceptual design was selected from which the purification filter was fabricated. The selected concept for detail design was a transparent polyethene cylindrical purification filter fitted with local iron sponge containing activated charcoal and local potash. The reagents were arranged in this order; local potash for the removal of water vapour and carbon dioxide followed by activated charcoal which serves as a purifying agent for hydrogen sulphide. The results obtained showed reduction in percentage composition of hydrogen sulphide (H2S), carbon dioxide, and water vapour. On the other hand, there was an increase in percentage composition of methane (CH4) which is an indication of improvement in methane production after purification. The outcomes of the results obtained were satisfactory and the combination of local potash and activated charcoal was adequate for biogas purification.

Publisher

International Journal of Mathematical, Engineering and Management Sciences plus Mangey Ram

Subject

General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science

Reference26 articles.

1. Adelekan, B. A. & Bamgboye, A.I. (2009). Comparison of biogas productivity of cassava peels mixed in selected ratios with major livestock waste types. African Journal of Agricultural Research, 4(7), 571-577.

2. Akinbami, J. F. K. (2001). Renewable energy resources and technologies in Nigeria: present situation, future prospects and policy framework. Mitigation and Adaptation Strategies for Global Change, 6(2), 155-182.

3. Akinbami, J. F., Ilori, M. O., Oyebisi, T. O., Akinwumi, I. O., & Adeoti, O. (2001). Biogas energy use in Nigeria: current status, future prospects and policy implications. Renewable and Sustainable Energy Reviews, 5(1), 97-112.

4. Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755-781.

5. Bamgboye, I. A. (2012). The potential of producing fuel from biomass in Nigeria. In Jekayinfa SO Ed). Building a non-oil export based economy for Nigeria: the potential of value –added products from agricultural residues. Cuvillier Verlag Gottingen. pp. 35-41

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3