Artificial Neural Network (ANN) Based Empirical Interpolation of Precipitation

Author:

Joshi Rajesh

Abstract

Various climate impact studies need to generate estimates of climate variables at a given location based on values from other locations. It is well established fact that there are strong sensible physical linkages between global climate and local scale weather phenomenon. Therefore, empirical interpolation or downscaling has emerged as a prospective tool to relate atmospheric circulation patterns to surface variables for forecasting regional climate from GCM and RCM output dataset. In this paper, application of Artificial Neural Networks (ANNs) based soft computing model for empirical interpolation of precipitation in Himalayan region is attempted. This method uses ANNs to generate precipitation estimates for 11 districts of Uttarakhand state (India) given information from a lattice of surrounding locations. In the present paper, we have used Feed Forward Back Propagation (FFBP) algorithm to develop a Multilayer Perceptron ANN model for empirical downscaling of precipitation in Himalayan region. The model is developed using climate data of Climate Research Unit (CRU) and observed data for past 110 years (1901-2010). The robustness and suitability of the developed ANN model is verified by testing its applicability for 11 districts of Uttarakhand state. 80% of the data are used for training of the model and remain 20% are used for testing of the model. The performance evaluation of the model is tested by RMSE value. The study show that the model works quite well for climatic records of most of the district after bias correction.

Publisher

International Journal of Mathematical, Engineering and Management Sciences plus Mangey Ram

Subject

General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GRNN Model for prediction of groundwater fluctuation in the state of Uttarakhand of India using GRACE data under limited bore well data;Journal of Hydroinformatics;2021-03-01

2. Forecasting Groundwater Fluctuation from GRACE Data Using GRNN;Advances in Intelligent Systems and Computing;2020

3. Maximizing Lifetime of Barrier Coverage Wireless Sensor Network with Tell Neighbor Algorithm;International Journal of Mathematical, Engineering and Management Sciences;2019-06-01

4. CAD-Based Automatic Clash Analysis for Robotic Assembly;International Journal of Mathematical, Engineering and Management Sciences;2019-04-01

5. Simulation Tool for Livestock Feeding: SIMFEED;International Journal of Mathematical, Engineering and Management Sciences;2019-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3