On Stress-Strength Interval-System Reliability with Applications in Heart Conditions

Author:

Pham Hoang

Abstract

The random variable X represents the stress placed on the system by the operating environment and random variable Y represents the strength of the system. A system is able to perform its intended function if its strength is greater than the stress imposed upon it. Reliability of the system is defined as the probability that the system is strong enough to overcome the stress. That is, R = P(Y >X). In other words, reliability is the probability that the strengths of the unit are greater than the stresses. The stress-strength model has found interests in many applications include mechanical engineering and human heart monitoring conditions. The interval-system is defined as a system with a series of chance events that occur in a given interval of time. A k-out-of-n interval-system is a system with a series of n events in a given interval of time which successes (or functions) if and only if at least k of the events succeed (function). In short, the k-out-of-n interval-system is an interval-system which successes if and only if at least k of n events succeeds. The stress-strength reliability inference of the interval-system with a series of n independent events that occurs in a given interval of time is considered. The reliability of the interval-system is the probability that at least k out of n events in a given interval of time succeed. This paper derives uniform minimum variance unbiased and maximum likelihood reliability estimates of k-out-of-n interval-system based on stress-strength inference events where X (stress) and Y (strength) are independent two-parameter exponential random variables. An application in human heart conditions to illustrate the results is discussed.

Publisher

International Journal of Mathematical, Engineering and Management Sciences plus Mangey Ram

Subject

General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress-strength reliability estimation for bivariate copula function with rayleigh marginals;International Journal of System Assurance Engineering and Management;2023-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3