Diagnostic and Monitoring System for Technical Condition of Electromechanical Section of Thermal Control Systems in Spacecraft

Author:

Matveev Stanislav A.,Korotkov Evgeny B.,Zhukov Yuri A.,Slobodzian Nikita S.,Nadezhin Mikhail I.,Gorbunov Andrei V.,Tanklevskiy Leonid T.

Abstract

Modern diagnostics methods ensuring the safety of production and operation, as well as the improvement of functional characteristics of electromechanical systems’ are discussed, method of diagnostics according to the spectrum and hodograph of the engine’s equivalent current is presented. Functional concept is presented for the system of control, diagnostic and monitoring of technical condition of thermal control systems’ electromechanical part in the spacecraft. The decision-making and forecasting algorithm for the operational resource is based on ground-based studies and diagnostic results. This approach to device diagnostics and monitoring is also used in other servo drives, mechatronic and robotic systems of space vehicles and other objects that are inaccessible and left unattended. Hardware-algorithmic implementation of the system is described, recommendations on the components base selection are given.

Publisher

International Journal of Mathematical, Engineering and Management Sciences plus Mangey Ram

Subject

General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview of electric pump units for spacecraft thermal control systems;Spacecrafts & Technologies;2021-12-24

2. Design and Implementation of Internet of Things+UAV Flight Monitoring and Management System;2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE);2021-11-19

3. Overview of diagnostic methods for electric pump units of satellite platforms;Radio industry (Russia);2020-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3