Seismic Driven Geomechanical Modeling of Uplifted and Subsided Wells in Mumbai Offshore and Its Engineering Implications

Author:

Ambati Venkatesh1,Mahadasu Nagendra Babu1,Nair Rajesh R.1

Affiliation:

1. Computational Petroleum Geomechanics Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, India.

Abstract

Seismic data provide evidence about hydrocarbon deposition, geological and geophysical subsurface information, including geomechanical aspects. Deriving and understanding geomechanical properties is crucial for reservoir management as it can avoid drilling and production-related problems that cause environmental impacts associated with land subsidence and uplift. The Poison's ratio (PR), Young Modulus (YM), and elastic moduli for a reservoir block were estimated using 3D seismic pre-stack data and well data. 3D Mechanical Earth Models (MEM) were also developed using the well logs, seismic horizons, and drilling data. Seismic data-derived geomechanical properties were compared with the mechanical earth models for the first time for this field. Well-tie analysis was used for inversion of 3D seismic data to extract detailed waveform and amplitude information. The brittleness index of the subsurface layers was estimated, which is a critical rock property that provides information about rock hardness and fragility phenomenon. The brittleness index has a diverse range from 5-35%, with significant contrast at shallow zones. PR and YM models generated from 3D MEM and seismic data have average values of 0.2 -0.6 and 5 - 28 GPa with significant contrast from shales and carbonates. The study recommends that the drilling through these problematic zones should be avoided to avoid wellbore problems that cause challenges in maintaining wellbore integrity and reservoir management in the North-Heera field, Mumbai Offshore Basin.

Publisher

International Journal of Mathematical, Engineering and Management Sciences plus Mangey Ram

Subject

General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3