Enhancement in Thermal Properties of Organic Phase Change Material (Paraffin) via TiO2 Foam Doping

Author:

Bora Neetu1,Joshi Deepika P.1

Affiliation:

1. Department of Physics, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.

Abstract

Phase change materials (PCM) can absorb or release a huge amount of latent heat in accordance with the increase or decrease of the surrounding temperature. Among all the studied PCMs, organic PCM paraffin has been chosen due to the large energy storage capacity for thermal energy storage (TES). The present work introduces a thermally modified phase change material by TiO2 foam impregnation in paraffin. Three TiO2/paraffin PCM composites TPCM1, TPCM2, and TPCM3 containing 10 wt.%, 15 wt.%, and 20 wt.% of TiO2 foam with paraffin have been successfully synthesized for thermal energy storage. The porous TiO2 foam can provide a high paraffin loading capacity of up to 80 % (TPCM3) due to hollow cavities. TiO2 foam is uniformly distributed over the inner and outer surface of the paraffin as a nano additive to enhance the thermal conductivity (TC) of the composite PCM. The structural, morphological, and thermal study revealed that doping of the supporting material has potentially modified all the criteria of PCM composite for TES. The highest leakage-proof result was obtained for 20 wt.% of TiO2 foam impregnated composite (TPCM3) by analysing mass loss across 500 thermal cycles in an oven at 80°C. The thermal reliability of the TPCM3 composite has also been investigated after 500 thermal cycles. The TPCM3 composite maintains its crystalline nature with homogeneous dispersion and thermal stability without affecting the thermal and chemical properties of the PCM. The latent heat of the TPCM3 composite reached 182.87 J/g, and the thermal conductivity has been calculated at 0.71 W/m-K, which is 3.73 times higher than paraffin. The results concluded that synthesized TPCM3 composite could be a potential candidate for TES due to chemical and physical compatibility, easy synthesis process, good thermal and chemical reliability, and acceptable energy storage capacity with enhanced thermal conductivity.

Publisher

Ram Arti Publishers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3