Evaluating the Deep Learning Models Performance for Segmentation of Oral Epithelial Dysplasia: A Histological Data-Driven Approach
Author:
Rahman Taibur1, Mahanta Lipi B.1
Affiliation:
1. Mathematical and Computational Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India. & Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
Abstract
Oral epithelial dysplasia (OED) poses a significant precancerous risk, potentially progressing to oral squamous cell carcinoma (OSCC). Precise segmentation of OED within histopathological images is pivotal for early diagnosis and treatment planning. This study evaluates Deep Learning (DL) models for precise Oral Epithelial Dysplasia (OED) segmentation in biopsy slide images. The Vanilla UNET model is explored with the standard UNET and other transfer learning models (VGG16, VGG19, MobileNet, and DeepLabV3+) as the backbone of the model. For our application, U-Net demonstrated superior performance (IoU: 93.73%, precision: 97.96%, recall: 97.78%, F1-score: 96.76%). Visual examples highlight model strengths and limitations, providing insights beyond traditional metrics. This research advances computer-aided histopathological analysis, emphasizing DL models’ crucial role in enhancing diagnostic accuracy and patient care.
Publisher
Ram Arti Publishers
Reference24 articles.
1. Abdul, N.S., Shivakumar, G.C., Sangappa, S.B., Di Blasio, M., Crimi, S., Cicciù, M., & Minervini, G. (2024). Applications of artificial intelligence in the field of oral and maxillofacial pathology: A systematic review and meta-analysis. BMC Oral Health, 24(1), 122. https://doi.org/10.1186/s12903-023-03533-7. 2. Bhinder, B., Gilvary, C., Madhukar, N.S., & Elemento, O. (2021). Artificial intelligence in cancer research and precision medicine. Cancer Discovery, 11(4), 900-915. https://doi.org/10.1158/2159-8290.CD-21-0090. 3. Borse, V., Konwar, A.N., & Buragohain, P. (2020). Oral cancer diagnosis and perspectives in India. Sensors International, 1, 100046. https://doi.org/10.1016/j.sintl.2020.100046. 4. Brennan, M., Migliorati, C.A., Lockhart, P.B., Wray, D., Al-Hashimi, I., Axéll, T., Bruce, A.J., Carpenter, W., Eisenberg, E., Epstein, J.B., Holmstrup, P., Jontell, M., Nair, R., Sasser, H., Schifter, M., Silverman, B., Thongprasom, K., Thornhill, M., Warnakulasuriya, S., & van der Waal, I. (2007). Management of oral epithelial dysplasia: A review. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 103, S19-e1- S19.e12. https://doi.org/10.1016/j.tripleo.2006.10.015. 5. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (pp. 801-818). http://arxiv.org/abs/1802.02611.
|
|