Evaluating the Deep Learning Models Performance for Segmentation of Oral Epithelial Dysplasia: A Histological Data-Driven Approach

Author:

Rahman Taibur1,Mahanta Lipi B.1

Affiliation:

1. Mathematical and Computational Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India. & Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.

Abstract

Oral epithelial dysplasia (OED) poses a significant precancerous risk, potentially progressing to oral squamous cell carcinoma (OSCC). Precise segmentation of OED within histopathological images is pivotal for early diagnosis and treatment planning. This study evaluates Deep Learning (DL) models for precise Oral Epithelial Dysplasia (OED) segmentation in biopsy slide images. The Vanilla UNET model is explored with the standard UNET and other transfer learning models (VGG16, VGG19, MobileNet, and DeepLabV3+) as the backbone of the model. For our application, U-Net demonstrated superior performance (IoU: 93.73%, precision: 97.96%, recall: 97.78%, F1-score: 96.76%). Visual examples highlight model strengths and limitations, providing insights beyond traditional metrics. This research advances computer-aided histopathological analysis, emphasizing DL models’ crucial role in enhancing diagnostic accuracy and patient care.

Publisher

Ram Arti Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3