Comparative assessment of indoor and outdoor air environment of poultry farms in Edo State, Nigeria

Author:

Adams Rahmatulai, ,Idemudia Blessing Iyore,Imarhiagbe Emmanuel Esosa,Ikhajiagbe Beckley,Ukpebor Emmanuel,Ekhaise Frederick Osaro, , , , ,

Abstract

Intensive poultry farming creates the ideal environment for pathogen concentration and transmission. The presence of thousands of birds in an enclosed, warm, and dusty atmosphere is ideal for the transmission of infectious diseases from birds to humans. This study was conducted to assess the indoor and outdoor air quality of different poultry types in Edo State, Nigeria. The physicochemical conditions of the air around the poultry environments differed with location and poultry types. The concentrations of carbon dioxide (CO2,), nitrous oxide (N2O), hydrogen sulphide (H2S) as well as particulate matter (PM10) were all within recommended limits established by the World Health Organization. However, significant elevations in Ammonia (NH3) and sulphur dioxide (SO2) levels were observed in substandard poultry farms across the locations. Total bacterial counts ranged from 1.38CFU/m5 – 90.35 x105CFU/m3 irrespective of location and poultry type. Within the poultry types, bacteria count inside the poultry environment (3.11 x105CFU/m3) significantly differed from concentrations outside the poultry environment (22.58 x105CFU/m3, p<0.05). The Lowest microbial counts were obtained in the standard poultry farms. Molecular identifications revealed the presence of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Bacillus subtilis as the bacterial isolates whereas Fusarium oxysporum, Aspergillus niger, Rhizopus stolonifer, Trichoderma polysporum, Aspergillus fumigatus were the fungal isolates. Staphylococcusaureus was the most predominant bacterial species (25%) while Aspergillus niger was the most predominant fungal species (30%).

Publisher

Babes-Bolyai University

Subject

Cell Biology,Environmental Science (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3