Impact of plant-based nanoparticles synthesized from Carica papaya and Bryophyllum pinnatum against selected microorganisms

Author:

Igiebor Francis AibuedefeORCID, ,Michael Favour Chinaza,Haruna OchoyamaORCID,Ikhajiagbe BeckleyORCID, , ,

Abstract

Plant-based nanoparticles offer sustainable, eco-friendly alternatives to conventional methods, promising antibacterial properties in the face of antibiotic resistance and addressing global health concerns. Five urine and stool samples were collected from the Benin Medical Centre in Benin City, Edo State, and sent to the Wellspring University Research Laboratory for microbiological analysis. Carica papaya and Bryophyllum pinnatum were used for fresh utilization by washing, weighing, and crushing their leaves, then mixing them with distilled water and heating at 85 °C and 60 °C for 60 minutes. Silver and copper nanoparticles (AgNPs and CuNPs) were synthesized using standard procedures. The NPs were preliminary validated by visual detection of color changes and characterized using a UV-visible spectrophotometer at 300 nm and Fourier transform infrared. The in vitro antimicrobial activity of plant-mediated NPs was investigated using five isolates: S. aureus, B. alvei, H. pylori, P. aeruginosa, and E. coli. The in vitro antimicrobial activity of plant-mediated NPs was investigated using five clinical strains displaying multiple resistance to antibiotics: S. aureus, B. alvei, H. pylori, P. aeruginosa, and E. coli. The agar-well diffusion method showed inhibition of the isolates by plant-mediated NPs but no inhibition by the plant extract alone. The study indicates that plant-mediated NPs exhibit promising antimicrobial activity, promoting sustainability and eco-friendliness, but further research is needed to assess their safety and efficacy in clinical settings. Keywords: nanoparticles, resistant, antimicrobial, plant-mediated, MAR index.

Publisher

Babes-Bolyai University Cluj-Napoca

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3